Name: _____

Date: ___

Student Exploration: Osmosis

Vocabulary: cell membrane, concentration, diffusion, dynamic equilibrium, osmosis, semipermeable membrane, solute, solvent

Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

- 1. Suppose you were trapped on a desert island with no sources of fresh water. Should you drink water from the ocean? Explain why or why not.
- 2. What do you think would happen if you watered your houseplants with salt water?

Gizmo Warm-up

A **cell membrane** is a thin "skin" that surrounds a cell. It is a **semipermeable membrane**, which means that some particles pass through the membrane easily while others cannot.

The Osmosis Gizmo[™] portrays a cell (red square) in a solution of purple **solute** particles dissolved in green **solvent** particles. Press **Play** (▶) and observe.

1. Which particles can pass through the cell membrane?

- 2. Which particles cannot pass through the cell membrane? _____
- 3. Click Reset (2), and then click Play again. What do you notice about the size of the cell?

Activity A:	Get the Gizmo ready:	
Observing osmosis	 Click Reset. Set the Initial cell volume to 40%. You will need a calculator for this activity. 	

Question: How do solute concentrations affect the volume of a cell?

- 1. <u>Observe</u>: Use the **Solute outside** slider to change the concentration of solute particles outside the cell. Click **Play**. In each case, focus on whether the cell gets bigger or smaller.
 - A. In what situation does the cell get larger? _____
 - B. In what situation does the cell get smaller?
- 2. <u>Calculate</u>: The **concentration** of a solute is the amount of solute particles in a given amount of solvent. To calculate percentage concentration, divide the number of solute particles by the total number of particles (solute + solvent), and then multiply by 100:

% concentration = (solute \div total particles) × 100

Select the DESCRIPTION tab. Click **Reset**. Set the **Solute outside** to 10 and check that the **Initial cell volume** is 40%. (Note: The cell volume is expressed as a percentage of the container size.)

- A. How many solute particles are found inside the cell? _____ Outside? _____
- B. How many solvent particles are found inside the cell? _____ Outside? _____
- C. What is the total number of particles inside the cell? _____ Outside? _____
- D. What is the % concentration of solute inside the cell?
- E. What is the % concentration of solute outside the cell?
- 3. <u>Observe</u>: Click **Play**, and observe the numbers shown on the DESCRIPTION pane. How does each number change over time? Write "increases," "decreases," or "stays the same" (or "same") in each space.
 - Solute particles inside? _____
 Solute particles outside? _____
 - Solvent particles inside? _____
 Solvent particles outside? _____
 - Solute concentration inside? _____
 Solute concentration outside? _____

(Activity A continued on next page)

Activity A (continued from previous page)

4. <u>Observe</u>: Wait until the numbers are not changing very much. What do you notice about the

solute concentrations inside and outside of the cell?

This situation is called **dynamic equilibrium**.

5. <u>Experiment</u>: Click **Reset**. Check that the **Solute outside** is 10 and the **Initial cell volume** is 40%. To calculate the solvent concentration, divide the number of solvent particles by the total number of particles, and then multiply by 100. (Note: The Gizmo only displays the *solute* concentrations.)

|--|

- B. What is the solvent concentration outside the cell?
- C. Where is there a higher solvent concentration?
- D. Click Play. Do most of the solvent particles move into or out of the cell? (Hint: Does

the cell expand or shrink?)

6. Experiment: Click Reset, and set the Solute outside to 1.

A. What is the solvent concentration inside the cell?

- B. What is the solvent concentration outside the cell?
- C. Where is there a higher solvent concentration?
- D. Do you think the cell will get larger or smaller?
- E. Click Play to confirm your predictions. Were you correct?
- 7. <u>Summarize</u>: You have observed examples of **osmosis**—the **diffusion** of a solvent (such as water) across a semipermeable membrane. Summarize what you have observed by filling in the blanks in the following paragraph:

During osmosis, solvent particles move from an area of ______ concentration to an

area of ______ concentration. When there is a higher concentration of solvent

particles inside the cell, most solvent particles will move ______ the cell and the cell

will ______. When there is a higher concentration of solvent particles outside the

cell, most solvent particles will move ______ the cell and the cell will ______.

Activity B	Get the Gizmo ready:			60
Effect of cell volume	Click Reset.	6.33	6.33	40
	 Set the Solute outside to 5. 	5	4.27	20
	 Set the Initial cell volume to 40%. 	0		0

Question: How does changing the cell volume affect solute concentrations?

- 1. <u>Experiment</u>: Select the BAR CHART tab, and turn on **Show numerical values**.
 - A. Based on solute concentrations, do you expect the cell to swell or shrink?
 - B. Click **Play**, and observe. Was your prediction correct?
- 2. Observe: Click **Reset**. Move the **Initial cell volume** slider back and forth. How does the initial cell volume affect the solute concentrations inside and outside the cell?

3. Experiment: With the **Solute outside** set to 5, predict whether the cell will swell, shrink, or stay the same with each of the following **Initial cell volume** settings. Then use the Gizmo to check each prediction.

Predictions:	20%	50%	60%
Actual results:	20%	50%	60%

- 4. <u>Analyze</u>: Why do solvent particles flow into the cell when the initial volume is below 50%?
- 5. Extend your thinking: In the Osmosis Gizmo, the cell is placed in a very small chamber. Suppose a cell is placed in a large container of water with a very low solute concentration. What do you think would happen? Explain your answer.

