Name: \qquad Date:

Three-body Collisions Take home Assignment

In front of a hockey net, a $75.0-\mathrm{kg}$ centre moving at $2.50 \mathrm{~m} / \mathrm{s}\left[60.0^{\circ} \mathrm{S}\right.$ of E$]$ collides with an $85.0-\mathrm{kg}$ defenseman moving at $1.80 \mathrm{~m} / \mathrm{s}$ [$20.0^{\circ} \mathrm{S}$ of W]. They entangle and slide into the stationary $80.0-\mathrm{kg}$ goalie, pushing him back into the crease at $1.50 \mathrm{~m} / \mathrm{s}\left[74.0^{\circ} \mathrm{S}\right.$ of W$]$. What will be the velocity of the two entangled players immediately after colliding with the goalie?
Ignore any friction with the ice and rotational effects.
Given

$$
\begin{array}{lc}
m_{\mathrm{c}}=75.0 \mathrm{~kg} \quad m_{\mathrm{d}}=85.0 \mathrm{~kg} & m_{\mathrm{g}}=80.0 \mathrm{~kg} \\
\vec{v}_{\mathrm{c}_{\mathrm{i}}}=2.50 \mathrm{~m} / \mathrm{s}\left[60.0^{\circ} \mathrm{S} \text { of E }\right] & \vec{v}_{\mathrm{d}_{\mathrm{i}}}=1.80 \mathrm{~m} / \mathrm{s}\left[20.0^{\circ} \mathrm{S} \text { of W }\right] \\
\vec{v}_{\mathrm{g}_{\mathrm{i}}}=0 \mathrm{~m} / \mathrm{s} & \vec{v}_{\mathrm{g}_{\mathrm{f}}}=1.50 \mathrm{~m} / \mathrm{s}\left[74.0^{\circ} \mathrm{S} \text { of } \mathrm{W}\right]
\end{array}
$$

