Unit IV: Writing Formulas & Naming Compounds Guide

I) <u>Metal + Non-metal:</u>

*Ions are atoms or groups of atoms that have a charge. An ionic compound is a compound consisting of positive and negative ions held together in an ionic bond.

Example: What is the formula for the ionic compound formed by sodium (Na) and chlorine (Cl)?

Symbols: Na Cl
 Combining capacities: Na (+1) Cl (-1)
 Balanced charges: (+1) balances out (-1) so this ion pair is neutral.

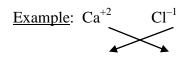
There will be one sodium ion for each chlorine ion. The formula is NaCl.

Writing Formulas with Monatomic ions

- Write the symbol for metal first, non-metal second
- Add subscripts (small numbers below & to the right) according to their ionic charges

E.g 1. Magnesium Chloride: Magnesium (Mg²⁺) Chloride (Cl⁻) \rightarrow MgCl₂

E.g. 2. Copper (II) Sulphate: Copper (Cu²⁺) Sulphate (SO₄²⁻) \rightarrow CuSO₄Note: Reduce subscripts to the lowest


ratio.

Rules for Writing Chemical Formulas

- Write the symbol for the more metallic element before the non metallic element. (Metallics are on the left side of the periodic table!)
 Example: Ca Cl
- 2. Write the combining capacities for the elements, using the periodic table. <u>Example</u>: Ca^{2+} Cl^{-1}
- 3. The combining capacities (c.c.) should "balance" to make a neutral compound. To balance the c.c. of 1 calcium ion (+2), you need 2 chloride ions (-1 plus 1).
 Example: c.c. → (+2) (-2)
- Subscripts indicate the number of atoms each element has in the compound. If the element has only 1 atom, no subscript is needed. The subscripts should be the smallest possible whole numbers.
 <u>Example</u>: 1 ion of calcium and 2 ions of chlorine is CaCl₂

Using the Cross – over method

Cross over the combining capacities from each of the ions so that they become the subscripts of the opposite ions. Reduce the subscripts to **lowest terms** if possible.

 $Ca_1 \qquad Cl_2 \qquad Ca_1Cl_2 \rightarrow CaCl_2$

Naming Compounds

Metal + Monatomic Ions

- Write the name of the metal first, then the non-metal
- Drop ending of non-metal (usually "ine" and add "ide") *See table below for examples.

E.g. 1. MgO \rightarrow magnesium oxide

 $CaF_2 \rightarrow$ calcium fluoride

ranning wonatonice roon-inetai ions.			
Element name	Symbol	Ion name	Ion symbol
Fluor ine	F	Fluor ide	F
Chlor ine	Cl	Chlor ide	Cl
Brom ine	Br	Bromide	Br
Iod ine	Ι	Iod ide	I
Oxygen	0	Oxide	O ²⁻ ***
Sulph ur	S	Sulphide	S ²⁻ ***
Selenium	Se	Selenide	Se ²⁻ ***
Nitrogen	N	Nitr ide	N ³⁻ ***
Phosph orus	Р	Phosph ide	P ³⁻ ***
Carbon	С	Carbide	C ⁴⁻ ***

Naming Monatomic Non-metal Ions:

Note: *** Students' common mistake!!!

Q: If a metal has more than one combining capacity, how do you know which one is it?

- Use the Roman numeral to indicate the charge/combining capacity.
- Place the Roman numeral charge value in brackets between the metal name and the word ion. $Fe^{3+} = iron (III) ion, Fe^{2+} = iron (II) ion, Cu^{1+} = copper (I) ion, Cu^{2+} = copper (II) ion$

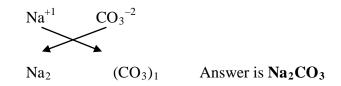
E.g. $Cu(SO_4)_2 \rightarrow copper$ (I) sulfate $Cu(SO_4) \rightarrow copper$ (II) sulfate

II) <u>Metal + Non-metal (Polyatomic ions):</u>

- Polyatomic ions act as a group (as if they were one element) that carry an **overall charge** as a group
- They are usually negative, non-metals, ending in "ate" or sometimes "ide" or "ite"
- Except for **ammonium** ion which is a positive, polyatomic metallic ion.

Writing Formulas

•


- Same as before,
 - o Write the symbol for metal first, non-metal second
 - Add subscripts (small numbers below & to the right) according to their ionic charges
- But you need to use a bracket to for the group of polyatomic atoms if you have >1 group

Example potassium sulfate $\rightarrow K_2SO_4$ nickel (III) dichromate $\rightarrow Ni_2(Cr_2O_7)_3$

Treat a polyatomic ion as a **single** ion.

Example: Hydroxide = $(OH)^{-1}$ Carbonate = $(CO_3)^{-2}$

<u>Example</u>: We used a chemical in the lab called sodium carbonate (Na_2CO_3) . The compound contains 2 sodium ions and 1 polyatomic carbonate ion.

To name formulas that contain polyatomic ions, **do not** change the **endings** of the polyatomic ion.

<u>Example</u>: FeCO₃ → Iron (II) carbon<u>ate</u> NH₄Cl → Ammon<u>ium</u> chloride

Naming Compounds

a) Metal + Polyatomic Ions

- Write the name of the metal first, then the non-metal
- Don't need to change the ending "ate"

E.g. $KMnO_4 \rightarrow potassium permanganate$ $Mn_2(CO_2)_3 \rightarrow manganese (III) carbonate$

*Exception: Ammonium (positive metallic) Don't change its ending & write it 1st as a metal!

E.g. $NH_4OH \rightarrow$ ammonium hydroxide

 $(NH_4)_2SO_4 \rightarrow$ ammonium sulphate (or sulfate)

Some Common 1 oryatomic 10hs (See Hebden, p. 541)				
Carbonate = CO_2^{2}	Nitrate = NO_3^-	Phosphate = PO_4^{3-}	$Hydroxide = OH^{-}$	
Dichromate = $Cr_2O_7^{2-}$	Ammonium = NH_4^+	$Chromate = CrO_4^{2}$	Acetate = CH_3COO^-	
Sulfate (Sulphate) = $SO_4^{2^-}$		$Permanganate = MnO_4^{-1}$		

Some Common Polyatomic Ions (See Hebden, p. 341)

III) <u>Non-metal + Non-Metal</u>

• Non-metals form **COVALENT** COMPOUNDS. They **don't follow the regular rules**, so prefixes are required to show the number of atoms present in each compound.

Learn these prenxes		
Prefix	# of atoms/	
	# of water molecules	
mono	1	
di	2	
tri	3	
tetra	4	
penta	5	
Hexa	6	
hepta	7	
octa	8	
nona	9	
deca	10	

Learn these prefixes!!!

Writing Formulas

- Write the symbol for the more metallic, positive element first
- Add subscripts (small numbers below & to the right) and the prefixes tell you how many of each atom there is in the compound.
- E.g 1. Trinitrogen tetroxide $\rightarrow N_3O_4$ Carbon momoxide $\rightarrow CO$ Carbon dioxide $\rightarrow CO_2$

Naming Compounds

- Place the prefixes before the name of each element according to the number of atoms present in the formula
- Leave out MONO if it comes before the first element
- E.g. P_2O_5 = diphosphorus pentoxide

 CCl_4 = carbon tetrachloride not monocarbon tetrachloride

Contraction:

The last vowel of these 3 prefixes (MONO, TETRA & PENTA) are dropped when combined with a compound beginning with a vowel.

- Mono + oxide --> monoxide but Di + iodine --> diiodine
- **Tetra** + oxide --> tetroxide
- Tri + iodine --> triiodine Hexa + oxide --> hexaoxide etc.

Penta + oxide --> pentoxide

IV) Naming Hydrates

- Hydrates are solid compounds that contain water molecules.
- E.g. Crystallized ionic solids --- When solids crystallize from aqueous solutions, they frequently include have water molecules surrounding them.
- E.g. $Al_2O_3 \cdot 3H_2O$, means 3 water molecules surround every one Al_2O_3 group.

Naming Hydrates & Writing Formulas

- Just like before. Next, include the "hydrate" part.
- The prefixes tell you the number of water molecules
- E.g. $CuSO_4 \cdot 5H_2O = copper$ (II) sulphate pentahydrate
 - $Zn(CH_3COO)_2 = zinc$ acetate dihydrate

 $Na_2CO_3.H_2O = sodium carbonate monhydrate$

V) Common acids

- An acid is a compound starting with an **H** for hydrogen and has a **pH level less than 7**.
- Most acids are oxoacids. That is they contain oxygen in addition to hydrogen and another element.
- When dissolved in water, an oxoacid yields one ore more H⁺ ions and a polyatomic oxianion. Naming Oxoacids:
 - Name the oxoanion + acid
 - Change "ite" \rightarrow "ous" or "ate" \rightarrow "ic"

E.g.

Oxoacid	Oxoanion
HNO ₂ Nitrous acid	NO_2^- Nitrite ion
HNO ₃ Nitric acid	NO_3^- Nitrate ion

Some other acids that are not oxacids are:

- HF = **hydro**<u>fluor</u>**ic** acid
- HCl = **hydro**<u>chlor</u>**ic** acid
- Q: How would you name HBr? Hydrobromic acid
- Q: How would you name HI? Hydroiodic acid

Examples:

Oxoacid	Oxoanion
HNO ₂ Nitrous acid	NO_2 Nitrite ion
HNO ₃ Nitric acid	NO_3 Nitrate ion
H ₃ PO ₄ Phosphoric acid	PO_4^{3-} Phosphate ion
H ₂ SO ₃ Sulphrous acid	SO_3^{2-} Sulphite ion
H ₂ SO ₄ Sulphuric acid	SO_4^{2-} Sulphate ion
HClO Hypochlorous acid	ClO ⁻ Hypochlorite ion
HClO ₂ Chlorous acid	ClO_2 Chlorite ion
HClO ₃ Chloric acid	ClO_3 Chlorate ion
HClO ₄ Perchloric acid	ClO ₄ ⁻ Perchlorate ion