E. REFLECTION OF LIGHT (EMR) IN CURVED MIRRORS

E1. Types of Curved Mirrors

There are two types of curved mirrors:

1. Concave Mirrors (converging)

Applications of concave mirrors:

- Satellite dishes
- Solar cookers
- Telescopes
- Sound dishes
- Creating a parallel beam (bright)

2. Convex Mirrors (Diverging)

Applications of convex mirrors:

- Store mirrors
- Truck mirrors
- Sound reflectors on ceiling
- Street lights

Note: Spherical Aberration

- if the mirror is spherical, the parallel incident rays will not converge on the same focus
- the further the rays are away from the principal axis, the further they go away from the principal focus
- a better focus is obtained using parabolic mirrors

E2. Images in Curved Mirrors

Step 1: Sketch 2 of the following reflected rays:

- Ray parallel to the PA reflects through F (or diverges from F)

- Ray through C reflects back on same path

- Ray through F reflects parallel to PA

Step 2: Locate the image

- image is always located where the REFLECTED rays converge (intersect)
- sketch the image from the PA to the intersection

Step 3: Describe the image

- Size - larger / smaller / same size as the object
- Attitude - inverted (flipped vertically) or upright
- Type - real (formed by real rays) or virtual

SUMMARY FOR CURVED MIRROR

1. Concave (Converging Mirrors)

	Image Characteristics	Location of Image
Beyond C	Smaller, Inverted, Real	Btw F and C
On C	Same size, Inverted, Real	On C
Between C and F	Larger, Inverted, Real	Beyond C
On F	No image	------
Between F and V	Larger, Upright, Virtual	Other side of mirror

2. Convex (Diverging Mirrors)

	Image Characteristics	Location of Image
All locations	Smaller, Upright, Virtual	Other side of mirror

In general

- Real images are always inverted and on the same side of the mirror
- Virtual images are always upright and on the opposite side of the mirror

E3. Equations for Curved Mirrors

$$
\frac{1}{d_{o}}+\frac{1}{d_{i}}=\frac{1}{f} \quad \frac{h_{i}}{h_{0}}=-\frac{d_{i}}{d_{0}}=\operatorname{Mag} \quad R=2 f
$$

Sign Convention

\(\left.\begin{array}{|lll|}\hline h, Mag+ \& Upright

- \& Inverted\end{array}\right\} \quad\)| Measured from PA |
| :--- |
| $\left.d, f+\quad \begin{array}{l}\text { Real } \\ \text { Virtual }\end{array}\right\}$ |

Note:
If Mag <1, then the image is smaller than the object
If $\mathrm{Mag}=1$, then the image is the same size as the object
If Mag > 1, then the image is larger than the object

G. LENSES

G1. Types of Lenses

- there are two types of lenses we will deal with:

Converging (convex) lens

G2. Images Formed by Lenses (very narrow)

3 RULES (similar to mirrors)

1. A ray parallel to the principal axis will refract through (or will appear to diverge from) the principal focus (F).
2. A ray through the optical centre (O) does not change direction. (Ignoring any lateral shift)

3. A ray through the principal focus (F) will refract parallel to the principal axis.

DRAWING THE IMAGE

- where the refracted rays intersect (if real rays, real image; if virtual rays, then a virtual image)
- image is drawn from the principal axis to the point of intersection

SUMMARY FOR LENSES

1. Converging (Convex) Lenses

	Image Characteristics	Location of Image
Beyond 2F	Smaller, Inverted, Real	Btw F and 2F
On 2F	Same size, Inverted, Real	On 2F
Between 2F and F	Larger, Inverted, Real	Beyond 2F
On F	No image	--------
Between F and O	Larger, Upright, Virtual	Same side of lens

2. Diverging (Concave) Lenses

	Image Characteristics	Location of Image
All locations	Smaller, Upright, Virtual	Same side of lens

In general

- Real images are always inverted and on the other side of the lens
- Virtual images are always upright and on the same side of the lens

G3. Equations for Lenses

$$
\frac{1}{\mathrm{~d}_{\mathrm{o}}}+\frac{1}{\mathrm{~d}_{\mathrm{i}}}=\frac{1}{\mathrm{f}} \quad \frac{\mathrm{~h}_{\mathrm{i}}}{\mathrm{~h}_{\mathrm{o}}}=-\frac{\mathrm{d}_{\mathrm{i}}}{\mathrm{~d}_{\mathrm{o}}}=\mathrm{Mag} \quad \mathrm{R}=2 \mathrm{f}
$$

Sign Convention

$$
\begin{aligned}
& \left.\begin{array}{rl}
\text { h, Mag } & \text { Upright } \\
- & \text { Inverted }
\end{array}\right\} \quad \text { Measured from PA } \\
& \mathrm{d}, \mathrm{f}+\text { Real }\} \text { Measured from } \mathrm{O}
\end{aligned}
$$

Note:
If $\mathrm{Mag}<1$, then the image is smaller than the object If $\mathrm{Mag}=1$, then the image is the same size as the object If Mag > 1, then the image is larger than the object

